On hereditarily indecomposable Banach spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolating Hereditarily Indecomposable Banach Spaces

A Banach space X is said to be Hereditarily Indecomposable (H.I.) if for any pair of closed subspaces Y , Z of X with Y ∩ Z = {0}, Y + Z is not a closed subspace. (Throughout this section by the term “subspace” we mean a closed infinite-dimensional subspace of X .) The H.I. spaces form a new and, as we believe, fundamental class of Banach spaces. The celebrated example of a Banach space with no...

متن کامل

Strictly Singular Non-compact Operators on Hereditarily Indecomposable Banach Spaces

An example is given of a strictly singular non-compact operator on a Hereditarily Indecomposable, reflexive, asymptotic `1 Banach space. The construction of this operator relies on the existence of transfinite c0-spreading models in the dual of the space.

متن کامل

A Hereditarily Indecomposable Asymptotic `2 Banach Space

A famous open problem in functional analysis is whether there exists a Banach space X such that every (bounded linear) operator on X has the form λ+K where λ is a scalar and K denotes a compact operator. This problem is usually called the “scalar-plus-compact” problem [14]. One of the reasons this problem has become so attractive is that by a result of N. Aronszajn and K.T. Smith [7], if a Bana...

متن کامل

There Is No Bound on Sizes of Indecomposable Banach Spaces

Assuming the generalized continuum hypothesis we construct arbitrarily big indecomposable Banach spaces. i.e., such that whenever they are decomposed as X ⊕ Y , then one of the closed subspaces X or Y must be finite dimensional. It requires alternative techniques compared to those which were initiated by Gowers and Maurey or Argyros with the coauthors. This is because hereditarily indecomposabl...

متن کامل

A Class of Hereditarily $ell_p(c_0)$ Banach spaces

We extend the class of Banach sequence spaces constructed by Ledari, as presented in ''A class of hereditarily $ell_1$ Banach spaces without Schur property'' and obtain a new class of hereditarily $ell_p(c_0)$ Banach spaces for $1leq p<infty$. Some other properties of this spaces are studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Pure and Applied Logic

سال: 2004

ISSN: 0168-0072

DOI: 10.1016/j.apal.2003.11.005